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Abstract

The aim of this work is to lay theoretical foundations for the prediction of crack paths within the theory
of quasistatic LEFM under the most general hypotheses] arbitrary three!dimensional geometry\ arbitrary
loading[ This objective requires to derive the expression of the stress intensity factors along the crack front
after an arbitrary in_nitesimal propagation[ Only the _rst two terms of their expansion in powers of the
crack extension length d\ proportional to d9 �0 and d0:1\ are considered in this paper[ Fully general formulae
for these terms are obtained by combining arguments of dimensional analysis "scale changes# and regularity
properties "continuity\ di}erentiability# of the stresses at a _xed\ given point with respect to d for d�9
derived from the BuecknerÐRice weight function theory[ This notably allows to extend the CotterellÐRice
criterion for stable rectilinear propagation of a mode I crack under plane strain conditions to the three!
dimensional case[ As an application\ a penny!shaped crack induced by hydraulic fracturing is considered[
Conclusions concerning the in~uence of the orientation and depth of such a crack upon the stability of its
coplanar propagation seem to be compatible with experimental evidence[ Þ 0887 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

The prediction of crack paths under general mixed!mode conditions\ using the theory of quasistatic
LEFM\ has been the subject of many investigations in the two!dimensional case "plane strain
conditions#[ These include both theoretical works devoted to in_nitesimal extension from a given
position "see e[g[ Cotterell and Rice\ 0879^ Sumi et al[\ 0872^ Leblond\ 0878^ Amestoy and Leblond\
0881#\ and numerical studies simulating propagation over arbitrarily long distances by step!by!
step methods "see e[g[ Sumi\ 0875^ Wawrzynek\ 0876^ Autesserre\ 0884#[

The "of course more di.cult# study of the three!dimensional case began about a decade ago with
the works of Rice "0874\ 0878#\ Gao and Rice "0875\ 0876a\ b# and Gao "0877#\ devoted to the
question of the stability of the fundamental "straight or circular# con_guration of the crack front
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vs small perturbations within the crack plane\ for semi!in_nite\ penny!shaped and external circular
cracks in an in_nite body[ The treatment heavily relied on explicit knowledge of the crack!face
weight functions for such geometries[ All three modes were considered "except for the external
circular crack# but the conclusions were mainly relevant in the case of pure mode I\ the hypothesis
of coplanar propagation being seldom veri_ed in the presence of mode II or III[ Also\ Nazarov
"0878# provided a similar treatment of the case of an in_nite body containing a planar crack loaded
in pure mode I but with an arbitrary contour[ All these works were based on two essential elements]
_rst\ asymptotic expressions of the stress intensity factors "SIFs# along the front of an arbitrary
in_nitesimal extension exhibiting the in~uence of its length^ second\ use of some propagation
criterion expressed in terms of these SIFs[ Combination of these elements then led to prediction
of the values of the extension length along the crack front[

Sli`ht deviations from coplanarity were envisaged in the more recent works of Gao "0881#\ Xu
et al[ "0883# and Ball and Larralde "0884#[ Unfortunately\ these three works yield con~icting
results[ It should also be noted that they do not rely on the same principle as the works quoted
above^ indeed they do not consider perturbations of the crack generated by adding some in_ni!
tesimal crack extension^ the whole initially plane surface of the crack is perturbed\ the small
parameter in the perturbation analysis being the distance between the original and perturbed crack
surfaces "as measured perpendicularly to the initial crack plane# instead of the length of the crack
extension[ Further comments on these works will be given in Part II of the present one[

The objective of the present work is to attack the problem under the most general possible
hypotheses] three dimensions\ arbitrary geometry of the body and the crack\ arbitrary loading[ "In
fact\ we shall be obliged to put certain restrictions on this very ambitious objective^ these will be
indicated in due time[# The principle of the treatment will di}er from that of those works on
nonplanar cracks just quoted and is more similar to that of earlier works on planar cracks\ in that
the perturbation of the crack will result from addition of some small extension] thus\ just as in the
works of Rice "0874\ 0878#\ Gao and Rice "0875\ 0876a\ b#\ Gao "0877# and Nazarov "0878#\ the
prediction of the crack path will result from combination of asymptotic expressions of the SIFs
for in_nitesimal crack extension lengths and some appropriate criterion[ However the originality
of the present paper will lie solely in the search for the expression of the SIFs along the front of
the extended crack] indeed the formulation of the propagation criterion is really an open problem
only in the presence of mode III and we shall only consider a mode I¦II situation in the application
presented at the end "the criterion used there will simply be the widely accepted {{principle of local
symmetry|| of Goldstein and Salganik\ 0863#[

In spite of the similarity of principle with previous works on the case of a planar crack\ a new
approach will have to be used[ Indeed the methods employed in these earlier works are inapplicable
here\ because of lack of explicit expressions of crack!face weight functions for arbitrary\ nonplanar
cracks[ The technique which will be used is an extension of that devised by the author "Leblond\
0878# for the study of the two!dimensional case "the results of which were more recently con_rmed
by Leguillon "0882# using another method#[ It is based _rst on scale changes and dimensional
analysis\ second on regularity properties "continuity\ di}erentiability# of the mechanical _elds at
a given\ _xed point with respect to the crack extension length d for d � 9^ the proof of di}er!
entiability relies on Rice|s "0874# formulation of the theory of Bueckner|s weight functions but
does not require any precise knowledge of these functions[ The results consist in formulae which
specify the general functional form of the successive terms of the expansion of the SIFs in powers



J[!B[ Leblond : International Journal of Solids and Structures 25 "0888# 68Ð092 70

of d in terms of the various mechanical and geometric parameters\ notably those characterizing
the shape of the crack extension "length\ kink angle\ curvature parameters#[ The functions involved
in these formulae can then be identi_ed through analytical or numerical calculations carried out
for some simple\ special cases[ Use of the criterion _nally yields the values of the geometric
parameters of the crack extension[

We shall restrict our attention in the present Part I to the _rst two terms of the expansion of the
SIFs\ proportional to d9 � 0 and d0:1\ respectively[ As will be seen\ the expressions of these terms
appear in fact as straightforward generalizations of those obtained in the two!dimensional case
"Leblond\ 0878^ Leguillon\ 0882#^ in particular they involve only the value of d at that point of the
front where the SIFs are expressed[ "In contrast\ the third term\ proportional to d0 � d\ depends
upon the values of d along the whole crack front^ this phenomenon was apparent in all previous
works on planar cracks and also of course occurs for more general geometries\ as will be detailed
in Part II[#

Practical implications of the results are illustrated by extending Cotterell and Rice|s "0879#
stability analysis vs small out!of!plane perturbations\ originally formulated for cracks propagating
under plane strain conditions\ to the three!dimensional case[ As an application\ a penny!shaped
crack loaded in mode I by far stresses plus an internal pressure\ as encountered in hydraulic
fracturing\ is considered[ It is concluded that stability of plane propagation of such a crack vs
small deviations from coplanarity depends on both its orientation and depth under the ground
surface] crack orientations perpendicular to the major or intermediate "in absolute value# principal
far stresses lead to instability\ whereas cracks orthogonal to the minor "in absolute value# principal
far stress propagate in a stable manner provided that they lie at a su.cient depth[ These theoretical
conclusions _nd some support in the fact that cracks induced by hydraulic fracturing are almost
always observed in practice to develop perpendicularly to the direction of minimum compression\
except sometimes in the case of very shallow depths[

1[ Geometric description of the crack and asymptotic expression of the stress _eld

We consider\ within a three!dimensional elastic body\ a crack of arbitrary shape\ except that
both its surface S and front F are assumed to be of class C�\ at least in the vicinity of F "this
rules out angular points on F for instance# "Fig[ 0#[ Let O denote an arbitrary point on F[
Cartesian coordinates x0\ x1\ x2 are attached to that point\ with Ox0 in the tangent plane to S and
orthogonal to F\ Ox1 perpendicular to S and Ox2 coincident with the tangent to F[ We shall
note s the position "curvilinear length# of O on F\ and s? that of the generic point on that curve[

We wish to describe the local geometry of S with a degree of accuracy such that the distance x1

from an arbitrary point on it to its projection onto the tangent plane at O be speci_ed up to order
O"x1

0¦x1
2#[ This is achieved by prescribing the components C00\ C02\ C22 of the curvature tensor C

of S at the point O[ The local geometry of F is then also described with a similar accuracy by
prescribing the curvature G of its projection onto the tangent plane at O[

Let us now add a small arbitrary deviated extension to the crack "Fig[ 1#[ We make the
fundamental assumption that the original crack front lies in both the old and new crack surfaces\
i[e[ that the crack extension develops continuously from that ori`inal front^ this rules out cases of
largely predominant mode III\ for which it is experimentally known "see e[g[ Palaniswamy and
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Fig[ 0[ Arbitrarily shaped crack in a three!dimensional body[

Fig[ 1[ Arbitrary crack with a small kinked and curved extension[
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Knauss\ 0864# that the new crack surface develops in the form of small\ separate tilted {{pennies||
centred on the original crack front and intersecting the original crack surface roughly per!
pendicularly to that front[ At each point s? of F\ the new tangent plane is obtained by rotating
the old one about the local tangent to F by an angle 8"s?# "the kink an`le^ see Fig[ 1#^ the value
8"s# of the function 8"s?# at the point O will often be simply noted 8 when no ambiguity will arise\
and the same convention will be used for other functions de_ned on the crack front[ The function
8"s?# will be assumed to be of class C�[ "Some authors introduce another angle characterizing a
rotation of the tan`ent plane about the x0!axis[ This angle will not be considered here\ because this
would violate the fundamental assumption mentioned above[#

We again wish to specify the distance from the crack extension to its tangent plane at the point
O up to order 1 with respect to the distance to that point[ Let us consider the intersection of the
crack extension and the Ox0x1 plane "perpendicular to F at O#[ The shape of this intersection is
assumed to be of the type described by the following expression]

x�1 � a�x�0
2:1¦

C�
1

x�0
1¦O"x�0

4:1#^ x2 � 9\ "0#

where Ox�0\ Ox�1 denote axes obtained by rotating Ox0\ Ox1 about Ox2 by the angle 8\ and a�\ C�
parameters "Fig[ 2#[ The necessity of introducing the term a�x�0

2:1 "resulting in an in_nite curvature
of the crack extension at the point O# to describe mixed mode propagation was established in
many papers\ e[g[ Cotterell and Rice "0879# " for plane strain conditions\ but the conclusion
obviously remains valid in the more general three!dimensional case#[ It may then be veri_ed that
a local geometric description of the surface of the crack extension can be achieved with the desired
degree of accuracy by specifying only "in addition to C\ G and 8# the parameters a� and C�\ plus
the derivative 8? 0 d8:ds of the kink angle along F at the point O[ This means that a� being for
instance assumed to be zero for simplicity\ specifying C\ G\ 8\ C� and 8? is su.cient to _x the
curvature tensor of the crack extension at the point O[

The description of the crack extension surface must be completed by a description of the
new crack front[ Let d"s?# denote the curvilinear length of the crack extension\ as measured

Fig[ 2[ Shape of the crack extension in the Ox0x1 plane[
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perpendicularly to the original crack front "see Fig[ 1#[ The function d"s?# will be assumed to be of
class C�[ The value d 0 d"s?# of d"s?# at the point O will be assumed to be non!zero^ this means
that O will be supposed not to be an endpoint of the {{active||\ effectively propa`atin` part of the
front[ A local geometric description of the shape and position of the new crack front with respect
to the old one can be achieved with the same degree of accuracy as before by specifying\ in
addition to the local extension length d\ its logarithmic derivative d?:d 0 dd:"d ds#[ This quantity
is homogeneous to a curvature and represents the inverse of the distance from the point O to the
intersection of the local tangents to the old and new crack fronts[

Let us now turn to the question of the asymptotic expression of the stresses near the original
crack front "prior to propagation#\ the crack lips being assumed to be traction!free^ in fact only
the _rst three terms of their expansion in powers of the distance to F will be considered here[ It is
now well known that the _rst\ singular term of this expansion can simply be obtained by superposing
that corresponding to the plane strain "not plane stress;# case "mode I¦mode II# and that
corresponding to the antiplane case "mode III# "see e[g[ Bui\ 0867\ for the case of a plane crack\
and Leblond and Torlai\ 0881 for the general case#[ The form of the second and third terms\
however\ is less well known[ It was studied in detail by Leblond and Torlai "0881#\ who found the
following expression]

sij"x0\ x1\ x2 � 9# �
Kpf

p
ij"u#

zr
¦Tp`

p
ij"u#¦ðBph

p
ij"u#¦K?pl

p
ij"u#

¦ClmKpm
plm
ij "u#¦GKpn

p
ij"u#Łzr¦O"r# "i\ j � 0\ 1\ 2#\ "1#

where r\ u denote polar coordinates in the Ox0x1 plane and the Einstein summation convention is
employed for the indices p � I\ II\ III and l\ m � 0\2[ KI\ KII\ KIII here are the SIFs at the point O[
TI\ TII\ TIII are the non!sin`ular stresses at the same point^ these quantities correspond to uniform
stress _elds of the form s00 � TI\ s02 � TII and s22 � TIII\ respectively[ BI\ BII\ BIII are coe.cients
which bear no special name[ K?I\ K?II\ K?III 0 dKI:ds\ dKII:ds\ dKIII:ds are the derivatives of the SIFs
along F at the point O[ Finally the functions f p

ij\ `p
ij\ hp

ij\ lp
ij\ mplm

ij \ np
ij are universal combinations of

sines and cosines depending only on Poisson|s ratio[ The terms K?pl
p
ij"u#zr\ ClmKpm

plm
ij "u#zr\

GKpn
p
ij"u#zr are corrections arising from the non!uniformity of the SIFs along the crack front\

plus the curvatures of the surface and front of the crack[ Equation "1# is given for points lying in
the Ox0x1 plane\ but similar expressions hold in all planes perpendicular to the crack front\ since
the choice of the point O on that front is arbitrary[

The stress expansion after kinking and propagation of the crack is of the same type\ provided
of course that the crack front is shifted to its new position and all coordinates and geometric
parameters changed accordingly[

2[ Continuity of the mechanical _elds with respect to the crack extension length

We now consider a _nite\ three!dimensional body V containing a traction!free crack of the type
described above[ "In fact the hypothesis of _niteness of V is made only for simplicity^ it can easily
be veri_ed that all reasonings and results expounded below remain valid provided only that the
crack front is _nite[# The complementary portions 1Vu and 1Vt of the boundary of this body are
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subjected to some prescribed displacements up and tractions tp which are assumed for simplicity
not to vary as the crack propagates[ "In fact\ this hypothesis is incompatible with the demand that
the criterion be satis_ed at every stage of the propagation\ and will be removed in _ne[#

It will be assumed from now on that d"s?# is of the form oh"s?# where o is a small positive
parameter and h"s?# a given\ _xed non!negative function[ The parameter o can be thought of as
some kinematic time and the function h"s?# as the corresponding rate of propagation of the crack
front[ "The point of view that h"s?# is a given function is purely formal\ since in reality that function
is unknown a priori[# Again\ the value h"s# of h"s?# at the point O will simply be noted h[ The
subject of our investigation will be the expansions of the mechanical _elds "displacements and
stresses# and of the SIFs in powers of o[0

The aim of this section is to show that the displacement and stresses at any `iven\ _xed point of
the body are continuous functions of o at o � 9[ "For simplicity\ this property has already been\ and
will often be\ termed {{continuity with respect to the crack extension length d||\ without any mention
of the point s? where d"s?# has to be taken^ the analogous expression {{di}erentiability with respect
to d|| should similarly be understood as di}erentiability with respect to o[# This result should not
be regarded as a mere triviality because the possible existence of some kink angle 8"s?# along the
crack front means that the propagation path is geometrically singular at o � 9[

We consider two situations[ In the _rst one the loading "up\ tp# is exerted on 1Vu and 1Vt and the
"traction!free# crack is in its original position\ prior to kinking and propagation[ Using a classical
LEFM trick\ we can assume the crack to be in fact in its _nal position provided that suitable
tractions t2"s?\ x# are exerted on the upper "¦# and lower "−# lips of the crack extension^ the
symbol x here denotes the curvilinear distance from the point s? along the intersection of the crack
extension and the plane orthogonal to the original front at s?[ These tractions are connected to the
original SIFs and are O"x−0:1#[ The displacement at any point M in this situation is denoted u"M#[
In the second situation\ up and tp are still imposed on 1Vu and 1Vt but the crack is in its _nal
position^ equivalently\ the tractions t2"s?\ x# are released[ The displacement at M is then denoted
u"M\ o#[

Considering the di}erence between the two situations\ one obtains a Problem A where a zero
displacement is imposed on 1Vu and a zero traction on 1Vt plus the main part of the crack\
while the crack extension is subjected to the tractions −t2"s?\ x#[ The displacement at M is then
u"M\ o#−u"M#[

We further de_ne a Problem B in the following way] "OX0X1X2# denoting an arbitrary\ _xed
orthonormal frame\ a zero displacement is again imposed on 1Vu as well as a zero traction on 1Vt

and the entire crack "main part plus extension#\ whereas a unit point force is exerted on the point
M in the direction Ei 0 1OM:1Xi[ The resulting displacements at the points "s?\ x# of the upper and
lower lips of the crack extension are denoted v"i#2"s?\ x\ o\ M#[ "These displacements obviously
depend on the length of the crack extension\ which is why the argument o is introduced in the
notation^ also\ note that M does not represent here the point of observation of the displacement\
but that of application of the force[#

0 The aim of the introduction of the multiplicative decomposition of d"s?# in the form oh"s?# is precisely to allow for
expansions in terms of a single parameter o instead of the function d"s?#\ which can be characterized only by an in_nite
number of parameters[
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Applying Betti|s reciprocity theorem to Problems A and B\ one gets

ui"M\ o#−ui"M# � gF

ds? g
d"s?#

9

ð−t¦"s?\ x# = v"i#¦"s?\ x\ o\ M#

−t−"s?\ x# = v"i#−"s?\ x\ o\ M#Łð0¦O"o#Ł dx[

The multiplicative term 0¦O"o# here arises from the expression of the elementary area on the crack
extension\ namely ð0¦O"o#Ł ds? dx[ Di}erentiating this equation with respect to the coordinates Xj

of M also yields\ since the tractions t2 are independent of the position of that point]

1ui

1Xj

"M\ o#−
1ui

1Xj

"M# � gF

ds? g
d"s?#

9 $−t¦"s?\ x# =
1v"i#¦

1Xj

"s?\ x\ o\ M#

−t−"s?\ x# =
1v"i#−

1Xj

"s?\ x\ o\ M#% ð0¦O"o#Ł dx[

The quantities 1v"i#2:1Xj which appear in this expression do not represent deformations\ since the
coordinates with respect to which one di}erentiates are those of the point of application of the force\
not of that of observation of the displacement^ they must instead be interpreted as displacements at
the points "s?\ x# of the upper and lower lips of the crack extension resulting from the application
of unit {{dipoles|| at M\ just as in the two!dimensional case "see Leblond\ 0878#[

Since the quantities v"i#2 and 1v"i#2:1Xj are displacements\ they are bounded[ It follows that
=ui"M\ o#−ui"M# = and ="1ui:1Xj#"M\ o#−"1ui:1Xj#"M# = are smaller than some constants times the
integral

gF

ds? g
oh"s?#

9

ð>t¦"s?\ x#>¦>t−"s?\ x#>Ł ð0¦O"o#Ł dx[

Since the tractions here are O"x−0:1# and F is bounded "this results from the assumed _niteness of
V#\ this integral is O"zo#[ It follows that ui"M\ o#−ui"M# and "1ui:1Xj#"M\ o#−"1ui:1Xj#"M# are
also O"zo#\ and therefore that the displacement and its gradient "and hence the stresses# at the
given point M are continuous with respect to o at o � 9\ q[e[d[

3[ First term of the expansion of the SIFs in powers of the crack extension length

We now turn to the expression of the SIFs just after the kink[ We _rst assume that V is a sphere
of centre O and radius R\ subjected to a given surface traction _eld T on its boundary and
containing a traction!free\ kinked and curved surface crack whose original front F passes through
the point O "Fig[ 3#[ Let KI"o#\ KII"o#\ KIII"o# denote the SIFs at that point O� of the _nal crack
front which lies in the plane orthogonal to F at O[ These SIFs depend on all the geometric and
mechanical parameters of the problem^ this can be written symbolically

K"o# 0"KI\ KII\ KIII#"o# 0 LðR\ C\ G\ 8\ 8?\ a�\ C�\ oh\ h?:h^ TŁ "2#

where the functional L is linear with respect to the traction _eld T[ Also\ the natural assumption
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Fig[ 3[ Kinked and curved surface crack in a sphere[

is made that it is inde_nitely di}erentiable with respect to all its geometric arguments\ except the
extension length oh for the value oh � 9 "see Section 3 below#[ Parameters characterizing the
geometry of the surface and the front of the crack with a higher degree of accuracy than that
considered here should also\ in theory\ be included among the arguments of L[ They are omitted
here for the sake of simplicity of the notation^ it is easy to check a posteriori that introducing them
does not induce any modi_cation of the results derived below[ Also\ note that since we are dealing
with a surface crack\ L does not depend upon any argument "other than R# measuring the
dimensions of the main part of the crack[

It is well known that a new solution to the equations of linear elasticity can be obtained from
an old one by multiplying all distances and displacements by a positive factor l while keeping the
stresses "and therefore the surface tractions# unchanged[ If such a transformation is performed in
the present case\ the geometric parameters R\ C\ G\ 8\ 8?\ a�\ C�\ oh\ h?:h become lR\ C:l\ G:l\ 8\
8?:l\ a�:zl\ C�:l\ loh\ h?:"lh#\ respectively\ and the SIFs\ being limits of certain stress components
times the square root of the orthogonal distance to the crack front\ are multiplied by zl[ Thus\
the functional L veri_es the following {{homogeneity|| property " for every positive l#]

LðlR\ C:l\ G:l\ 8\ 8?:l\ a�:zl\ C�:l\ loh\ h?:"lh#^ TŁ

� zl LðR\ C\ G\ 8\ 8?\ a�\ C�\ oh\ h?:h^ TŁ[ "3#

Let L� denote the limit of the functional L for o : 9\ i[e[ for a vanishing crack extension length
"this is the functional that gives the SIFs just after the kink#[ This new functional is still linear with
respect to T\ and it is inde_nitely di}erentiable with respect to all its geometry arguments\ since
it does not\ by de_nition\ depend on oh[ With this notation\ eqn "3# becomes in the limit o : 9]
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Fig[ 4[ Kinked and curved crack in an arbitrary body[

L�ðlR\ C:l\ G:l\ 8\ 8?:l\ a�:zl\ C�:l\ h?:"lh#^ TŁ

� zl L�ðR\ C\ G\ 8\ 8?\ a�\ C�\ h\ h?:h^ TŁ[ "4#

Thus\ L� veri_es a homogeneity property analogous to eqn "3# for L\ but for the disappearance
of the argument oh[

We now come back to the case of an arbitrarily shaped body\ and consider spheres of center O
"$ F# and su.ciently small radius R for the surface S of the main part of the crack to intersect
their boundary "this means that the crack is a surface crack within such spheres# "Fig[ 4#[ Let
T"R\ o# denote the traction _eld exerted on the boundary of the sphere of radius R\ as a result of
the application of the external load "up\ tp# on 1Vu and 1Vt\ when the crack extension length is
d"s?# � oh"s?#[ For any such length\ the mechanical _elds inside the sphere\ and hence the SIFs at
the point O�\ remain unchanged if one eliminates its exterior while preserving the traction _eld
T"R\ o# exerted on its boundary[ Hence these SIFs may be expressed as

K"o# 0"KI\ KII\ KIII#"o# � LðR\ C\ G\ 8\ 8?\ a�\ C�\ oh\ h?:h^ T"R\ o#Ł[ "5#

Let us take the limit o : 9 in the preceding equation[ Then L tends to L� by de_nition\ and
T"R\ o# tends to the traction _eld T"R# exerted on the boundary of the sphere of radius R prior
to kinkin` and propa`ation of the crack\ because of the property of continuity of the stresses at a
_xed point with respect to the crack extension length established in the preceding section[ Thus
one gets

K� 0 lim
o:9

K"o# � L�ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ T"R#Ł[ "6#
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This equation shows that quite remarkably\ the SIFs just after the kink depend on the loading
only through the value of the stress _eld prior to kinkin`[

In fact\ they will now be seen to depend only on the _rst\ sin`ular term of the stress expansion
before the kink[ In order to prove this\ let us transform eqn "6# by using eqn "4# with l � 0:R plus
the linearity of L� with respect to T]

K� � zR L�ð0\ RC\ RG\ 8\ R8?\ zR a�\ RC�\ Rh?:h^ T"R#Ł

� L�ð0\ RC\ RG\ 8\ R8?\ zR a�\ RC�\ Rh?:h^ zR T"R#Ł[

In intuitive terms\ this transformation is equivalent to {{watching the sphere through a magnifying
lens||[ Now eqn "1# implies that the surface traction t � s = n exerted on the boundary of the sphere
prior to kinking is of the form

t"r\ c\ x# � Kpf
p"c\ x#:zr ¦O"0#

where r\ c\ x denote spherical coordinates with origin at O] r\ distance from O to the generic point
M^ c\ angle between Ox2 and the vector OM^ x\ polar angle of the projection of OM onto the
Ox0x1 plane "0u if M $ Ox0x1#[ The dependence with respect to c here arises _rst from the
expression of the orthogonal distance to F\ namely r sin c¦O"r1#\ and second from the fact that
the normal vector n to the sphere depends on this angle[ It follows that\ denoting between braces
the traction _eld de_ned by a certain density]

zR T"R# 0 Kp"fp"c\ x##¦O"zR#[

Inserting this formula into the above expression of K� and taking the limit R : 9 "this is licit since
this expression is valid for all su.ciently small values of R#\ one gets

K� � KpL�ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "fp"c\ x##Ł 0 F"8# = K "7#

where F"8# is a linear operator depending on the kink angle[ In intuitive terms\ the _nal dis!
appearance of all geometric parameters except 8 arises from the fact that they vanish in the limit
of {{in_nite magni_cation of the lens||[

This expression of K� will be termed universal in the sense that it applies to any situation]
whatever the complexity of the geometry and the loading\ the SIFs just after the kink depend on
the various geometric and mechanical parameters of the problem only throu`h the local SIFs just
before the kink plus the local kink an`le[ This result generalizes that previously established in the
two!dimensional case "plane strain conditions# "Leblond\ 0878^ Leguillon\ 0882#[

In order to calculate the components FI\I"8#\ FI\II"8#\ FII\I"8#\ FII\II"8# of the operator F"8# "the
commas here only serve to separate the indices and do not denote a di}erentiation#\ one may take
advantage of their universality property by considering the simplest possible particular case\
namely that of an in_nite body under plane strain conditions\ loaded by uniform tractions at
in_nity and containing a straight crack extended in an arbitrary direction by an in_nitesimal
straight extension[ This problem was studied in several papers\ notably Bilby and Cardew "0864#\
Wu "0867#\ Amestoy et al[ "0868# and Amestoy and Leblond "0881#[ None of these yielded
completely explicit formulae for the functions FI\I"8#\ FI\II"8#\ FII\I"8#\ FII\II"8#^ the work which
goes farthest in the search for analytic expressions of these functions is the last one\ which provides
induction formulae that allow for the derivation of their exact expansions up to an arbitrary order
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with respect to the kink angle[ These expansions are given up to order 19 in the Appendix ðeqns
"A1#Ð"A4#Ł[

The function FIII\III"8# can be obtained in a similar way by studying the same particular case\
but with an antiplane loading[ This was done as early as 0854 by Sih\ for a crack extension of
arbitrary length[ The calculation was much simpler than in the plane strain case and a completely
explicit formula for KIII"o# could be obtained[ In the limit of an in_nitesimal extension\ this formula
yields eqn "A5# of the Appendix[

Finally\ a simple symmetry argument shows that the remaining functions FI\III"8#\ FII\III"8#\
FIII\I"8#\ FIII\II"8# are all zero\ i[e[ that the operator F"8# is of the following form]

F"8# 0 &
FI\I "8# FI\II "8# 9

FII\I "8# FII\II "8# 9

9 9 FIII\III "8#'[ "8#

Indeed\ let us apply a symmetry with respect to the Ox0x1 plane to both the body and the mechanical
_elds "Fig[ 5#[ For points lying in that plane\ the u0 and u1 components of the displacement are left
unmodi_ed while the u2 component changes sign[ It follows that KI\ KII\ KIII\ K�I\ K�II\ K�III become
KI\ KII\ −KIII\ K�I\ K�II\ −K�III\ respectively[ Since 8 is unchanged\ the formulae connecting the K�p
to the Kp read

K�I � FI\I "8#KI¦FI\II "8#KII¦FI\III "8#KIII^

K�II � FII\I "8#KI¦FII\II "8#KII¦FII\III "8#KIII^

K�III � FIII\I "8#KI¦FIII\II "8#KII¦FIII\III "8#KIII

before the transformation and

K�I � FI\I "8#KI¦FI\II "8#KII−FI\III "8#KIII^

Fig[ 5[ E}ect of a symmetry about the Ox0x1 plane on the geometry and the loading[
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K�II � FII\I "8#KI¦FII\II "8#KII−FII\III "8#KIII^

−K�III � FIII\I "8#KI¦FIII\II "8#KII−FIII\III "8#KIII

after it[ It immediately follows that FI\III"8# � FII\III"8# � FIII\I"8# � FIII\II"8# � 9[ "A similar argu!
ment involving a symmetry with respect to the Ox0x2 plane can be used to show that FI\I"8#\
FII\II"8#\ FIII\III"8# are even\ and FI\II"8#\ FII\I"8# odd\ functions of 8[#

4[ Differentiability of the mechanical _elds with respect to the crack extension length

We now wish to show that with the notations of Section 2\ u"M\ o# and s"M\ o# are differentiable
functions of o at o � 9[ The proof will rely on the following elementary mathematical result]

Proposition] Let f"x# denote a real function of a real variable\ de_ned for x − 9\ continuous at
x � 9\ di}erentiable for x × 9\ and such that f ?"x# tends to a limit l for x : 9[ Then f admits a
"right!hand# derivative equal to l at x � 9[

We shall apply this result to the quantities ui"M\ o# and "1ui:1Xj#"M\ o#\ considered as functions
of o[ "As in Section 2\ coordinates and components will refer here to a _xed\ arbitrary orthonormal
frame "OX0X1X2#[#

First\ both ui"M\ o# and "1ui:1Xj#"M\ o# have been shown in Section 2 to be continuous with
respect to o at o � 9[

Second\ Rice|s "0874# formulation of the theory of Bueckner|s weight functions is applicable for
o × 9\ since the crack propagates in a regular manner after the initial kink[ It follows that ui"M\ o#
is di}erentiable with respect to o for o × 9\ its derivative being given by

1ui

1o
"M\ o × 9# � gF� 6

1"0−n1#
E

ðKI "s?�\ o#K "i#
I "V\ s?�\ o\ M#¦KII "s?�\ o#K "i#

II "V\ s?�\ o\ M#Ł

¦
1"0¦n#

E
KIII "s?�\ o#K "i#

III "V\ s?�\ o\ M#7 ð0¦O"o#Łh"s?�# ds?�[ "09#

In this expression E and n denote Young|s modulus and Poisson|s ratio\ F� the front of the
extended crack\ s?� the curvilinear distance along F�\ and h"s?�# is just h"s?# expressed in terms of
s?� instead of s?[ Also\ KI"s?�\ o#\ KII"s?�\ o#\ KIII"s?�\ o# denote the SIFs at the point s?� of F� " for
a crack extension of length d"s?# � oh"s?##\ and K "i#

I "V\ s?�\ o\ M#\ K "i#
II "V\ s?�\ o\ M#\

K "i#
III "V\ s?�\ o\ M# those which would arise\ at the same point\ from application of a unit point force

in the direction Ei 0 1OM:1Xi at the point M\ 1Vu and 1Vt being simultaneously subjected to zero
displacements and tractions\ respectively "the argument {{V|| is introduced here to underline the
dependence upon the geometry of the whole body via these boundary conditions#[ The term
0¦O"o# arises from the fact that the line along which d"s?# is measured\ namely the intersection of
the crack extension and the plane orthogonal to F at the point s?\ is not exactly orthogonal to
F�^ thus\ the {{normal velocity|| "which appears in Rice|s formula# of the crack front at the point
s?� of F� is not exactly h"s?�# but ð0¦O"o#Łh"s?�#[

Di}erentiating eqn "09# with respect to the coordinates Xj of M\ we also get
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1

1o 0
1ui

1Xj1"M\ o × 9# � gF� 6
1"0−n1#

E $KI "s?�\ o#
1K "i#

I "V\ s?�\ o\ M#
1Xj

¦KII "s?�\ o#
1K "i#

II "V\ s?�\ o\ M#
1Xj %¦

1"0¦n#
E

KIII "s?�\ o#
1K "i#

III "V\ s?�\ o\ M#
1Xj 7

×ð0¦O"o#Łh"s?�# ds?�[ "00#

Third\ when o tends toward zero\ the right!hand sides of eqns "09#\ "00# tend to the limits

gF 6
1"0−n1#

E
ðK�I "s?#K "i#

I �"V\ s?\ M#¦K�II "s?#K "i#
II �"V\ s?\ M#Ł

¦
1"0¦n#

E
K�III "s?#K "i#

III�"V\ s?\ M#7 h"s?# ds?

and

gF 6
1"0−n1#

E $K�I "s?#
1K "i#

I �"V\ s?\ M#
1Xj

¦K�II "s?#
1K "i#

II �"V\ s?\ M#
1Xj %

¦
1"0¦n#

E
K�III "s?#

1K "i#�III "V\ s?\ M#
1Xj 7 h"s?# ds?

where the K "i#
p �"V\ s?\ M# denote the limits of the K "i#

p "V\ s?�\ o\ M# for o : 9\ i[e[ the SIFs just after
the kink resulting from the loadings described above\ just as for the Kp"s?�\ o# and K�p"s?#[

Using the above proposition\ one concludes that both ui"M\ o# and "1ui:1Xj#"M\ o# ðand hence
sij"M\ o#Ł are di}erentiable with respect to o at o � 9\ their derivatives being given by

1ui

1o
"M\ o � 9# � gF 6

1"0−n1#
E

ðK�I "s?#K "i#
I �"V\ s?\ M#¦K�II "s?#K "i#

II �"V\ s?\ M#Ł

¦
1"0¦n#

E
K�III "s?#K "i#

III�"V\ s?\ M#7 h"s?# ds?^ "01#

1

1o 0
1ui

1Xj1"M\ o � 9# � gF 6
1"0−n1#

E $K�I "s?#
1K "i#

I �"V\ s?\ M#
1Xj

¦K�II "s?#
1K "i#

II �"V\ s?\ M#
1Xj %¦

1"0¦n#
E

K�III "s?#
1K "i#

III�"V\ s?\ M#
1Xj 7 h"s?# ds?[ "02#

These di}erentiability properties imply that u"M\ o# and s"M\ o# admit the following asymptotic
expressions for o : 9]

u"M\ o# � u"M#¦O"o#^ s"M\ o# � s"M#¦O"o#\ "03#
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where the notations u"M# and s"M# refer to the situation prior to kinking[ Incidentally\ one may
remark that the next terms in the right!hand sides here are not proportional to o1 but to o2:1^ this
results from integration of eqns "09#\ "00# using the fact evidenced below\ and already well known
in the two!dimensional case\ that the asymptotic expression of the Kp"s?�\ o# is of the type
K�p"s?#¦"= = =#zo "and not K�p"s?#¦"= = =#o#[ Therefore the displacement and stresses are not twice
differentiable with respect to the crack extension len`th[ This clearly shows that again\ the assertions
that they are continuous and "once# differentiable cannot merely be accepted as {{obvious|| and need
to be proved in a rigorous manner\ as was done in Section 2 and here[

5[ Second term of the expansion of the SIFs in powers of the crack extension length

The second term of the expansion of the SIFs in powers of o will now be studied by extending
the analysis of Section 3 to the next order in o[ We _rst introduce the asymptotic expression of the
functional L for o : 9]

LðR\ C\ G\ 8\ 8?\ a�\ C�\ oh\ h?:h^ TŁ � L�ðR\ C\ G\ 8^ TŁ

¦L"0:1# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ TŁzoh¦O"o#[ "04#

The fact that the second term of the expression of L is proportional to zo "instead of o as one
would a priori expect# is due to the existence of the kink characterized by the angle 8\ and can be
justi_ed in the same way as in the two!dimensional case "see Leblond\ 0878#[ The arguments 8?\
a�\ C�\ h?:h in the expression of L� have now been discarded\ since formula "7#1 shows that K�\
and hence L�\ depend upon the geometric parameters of the crack extension only through the
kink angle 8[1 Just as L�\ the function L"0:1# is linear in T and inde_nitely di}erentiable with
respect to all its geometric arguments[

Expanding eqn "3# in powers of o\ one gets

L�ðlR\ C:l\ G:l\ 8^ TŁ

¦L"0:1# ðlR\ C:l\ G:l\ 8\ 8?:l\ a�:zl\ C�:l\ h?:"lh#^ TŁzloh¦O"o#

� zl"L�ðR\ C\ G\ 8^ TŁ¦L"0:1# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ TŁzoh¦O"o##^

identi_cation of the terms proportional to zo then yields

L"0:1# ðlR\ C:l\ G:l\ 8\ 8?:l\ a�:zl\ C�:l\ h?:"lh#^ TŁ

� L"0:1# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ TŁ[ "05#

Thus\ the homogeneity property for L"0:1# di}ers from those for L and L� ðeqns "3#\ "4#Ł by a
factor of zl[

Equation "03#1 implies that the traction _eld T"R\ o# exerted on the boundary of the sphere of

1 Note that L� still depends on C and G\ however\ because the SIFs just after the kink depend on those just before it
which\ when expressed as functions of the loading T\ depend on the curvatures of the surface and the front of the initial
crack[
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radius R as a result of the external loading\ when the length of the crack extension is d"s?# � oh"s?#\
admits an asymptotic expression for o : 9 of the type

T"R\ o# � T"R#¦O"o#[

Inserting this formula and eqn "04# into the expression "5# of K"o#\ one gets

K"o# � K�¦K"0:1#zoh¦O"o# � K�¦K"0:1#zd¦O"o#\ "06#

where K� is given by eqn "6# and K"0:1# by

K"0:1# � L"0:1# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ T"R#Ł[ "07#

It thus appears that K"0:1#\ just like K�\ depends on the loading only through the value of the stress
_eld prior to kinkin`[ This is a direct consequence of the absence of a term proportional to zo in
the asymptotic expression of T"R\ o#\ i[e[ of the di}erentiability of the stresses at a _xed point with
respect to the crack extension length[ It is also remarkable that the function d"s?# enters the two!
term expansion "06# of K"o# only throu`h its value at the point O\ i[e[ at s? � s[ As already mentioned
in the Introduction\ this property will not subsist for higher order terms of this expansion[ It will
be explained in detail in Part II\ but it can already be anticipated\ that this is because such terms
involve the derivative of T"R\ o# with respect to o at o � 9\ which was seen in the preceding section
to depend upon values of the function h"s?# at all points of the crack front\ not only at s? � s ðsee
eqn "02#Ł[

Let us now let R tend to zero[ We _rst use eqn "05# with l � 0:R and expand the functional L
in powers of R]

L"0:1# ðR\ C\ G\ 8\ 8?\ a�\ C�\ h?:h^ TŁ � L"0:1# ð0\ RC\ RG\ 8\ R8?\ zR a�\ RC�\ Rh?:h^ TŁ

� L"0:1# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ TŁ¦zR a�
1L"0:1#

1a�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ TŁ¦O"R#[

Second we note that eqn "1# implies that T"R# admits an asymptotic expression for R : 9 of the
type

T"R# 0
Kp

zR
"fp"c\ x##¦Tp"gp"c\ x##¦O"zR#

with the same notations as in Section 3 "recall that the Tp denote the initial non!singular stresses#[
We then insert these expressions into eqn "07# and get

K"0:1# �
0

zR
= KpL

"0:1# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "fp"c\ x##Ł

¦TpL
"0:1# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "gp"c\ x##Ł

¦a�Kp

1L"0:1#

1a�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "fp"c\ x##Ł¦O"zR#[

Now K"0:1# is independent of R^ hence the divergent term proportional to R−0:1 in the above
expression must necessarily be zero[ Taking the limit R : 9\ one then gets
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K"0:1# � TpL
"0:1# ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "gp"c\ x##Ł

¦a�Kp

1L"0:1#

1a�
ð0\ 9\ 9\ 8\ 9\ 9\ 9\ 9^ "fp"c\ x##Ł

0 G"8# = T¦a�H"8# = K "08#

where G"8# and H"8# are linear operators depending on the kink angle and T 0"TI\ TII\ TIII# is the
vector of initial non!singular stresses[ Thus\ K"0:1# admits a universal expression analogous to\
though somewhat more complex than\ that of K� "eqn "7##[ Again\ this result generalizes that
already known in the two!dimensional case "Leblond\ 0878^ Leguillon\ 0882#[

Proceeding in the same way as for the operator F"8#\ one can identify some components of G"8#
and H"8# by studying the special problem of an in_nite two!dimensional body loaded by uniform
far tractions and containing a two!branch crack[ Application of a plane loading "plane strain
conditions# results in non!zero values for the _rst and second SIFs and for the _rst non!singular
stress "corresponding to a uniform stress _eld s00 � TI# and thus allows for the calculation of
GI\I"8#\ GII\I"8#\ HI\I"8#\ HI\II"8#\ HII\I"8# and HII\II"8#[ Similarly\ application of an antiplane loading
results in non!zero values for the third SIF and the second non!singular stress "representing a
uniform s02 stress#\ and\ therefore\ leads to the evaluation of GIII\II"8# and HIII\III"8#[ Consideration
of a straight "a� � 9# secondary branch is su.cient to obtain the components of G"8#\ but
introduction of a non!zero a� is necessary to get those of H"8#\ since this operator describes the
e}ect of that curvature parameter upon K"0:1#[ The resulting curved crack problem can be dealt
with through a _rst order perturbative procedure with respect to a�\ using the fact that only the
_rst power of this parameter appears in the universal expression "08#[

The case of a plane loading was treated in detail by Amestoy and Leblond "0881# for both
straight and curved extensions[ Again\ the treatment did not yield completely explicit expressions\
but only accurate high order expansions and:or numerical values\ of the functions looked for[
These expansions and numerical values are given in the Appendix ðeqns "A6#\ "A7# and Table A0Ł[
The case of an antiplane loading and a strai`ht extension was studied by Sih "0854#\ who found
eqn "A8# of the Appendix[ Finally\ the case of an antiplane loading and a curved extension was
considered by the author in an unpublished work\ using the same perturbative method as Amestoy
and Leblond "0881#^ the result for the function HIII\III"8# is eqn "A09# of the Appendix[

The remaining functions GI\II"8#\ GI\III"8#\ GII\II"8#\ GII\III"8#\ GIII\I"8#\ GIII\III"8#\ HI\III"8#\
HII\III"8#\ HIII\I"8#\ HIII\II"8# are all zero\ which means that the operators G"8# and H"8# are of the
form

G"8# 0 &
GI\I "8# 9 9

GII\I "8# 9 9

9 GIII\II "8# 9'^ H"8# 0 &
HI\I "8# HI\II "8# 9

HII\I "8# HII\II "8# 9

9 9 HIII\III "8#'[ "19#

For GI\II"8#\ GII\II"8#\ GIII\I"8#\ HI\III"8#\ HII\III"8#\ HIII\I"8# and HIII\II"8#\ this results from a simple
symmetry argument analogous to that presented in Section 3 for some components of the operator
F"8#[ For GI\III"8#\ GII\III"8# and GIII\III"8#\ it follows from consideration of the case where the
geometry is invariant in the direction of the "straight# crack front[ Indeed one can then add a
uniform s22 stress to the stress _eld and obtain a new solution of the equations of elasticity still
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respecting the conditions of zero traction on the crack lips^ in this process TIII "which precisely
represents a uniform s22 stress# is changed whereas neither the initial nor the _nal SIFs are[ It
immediately follows that GI\III"8# � GII\III"8# � GIII\III"8# � 9[

6[ Extension of the cotterellÐrice stability analysis to three!dimensional and internally loaded

cracks

The preceding results will now be applied to the problem of expressing a criterion for stable
coplanar propagation of a plane crack loaded in mode I by an internal pressure "in addition to the
loading imposed on the external boundary of the body#\ generalizing that given by Cotterell and
Rice "0879# for the case of plane strain conditions and a traction!free crack[

This requires to extend eqns "7#\ "06#\ "08# to the case where a pressure p is exerted on the crack
lips[ This is easily done by using a classical superposition argument[ Indeed\ let us decompose the
original elasticity problem involving the external loading "up\ tp# on 1Vu and 1Vt plus the internal
pressure p into two problems "noted A and B# in the following way]

s � sA¦sB\ sA � s¦p0\ sB � −p0[

The stress _eld sB being uniform\ the corresponding SIFs are zero[ Therefore\ with obvious
notations\

Kp � KA
p ¦KB

p � KA
p ^ Kp"o# � KA

p "o#¦KB
p "o# � KA

p "o# "p � I\ II\ III#[

It is also evident from the de_nition of the non!singular stresses "see Section 1# that

TB
I � TB

III � −p^ TB
II � 9[

It follows that

TI � TA
I −p^ TII � TA

II^ TIII � TA
III−p[

Now the stress _eld sA corresponds to a problem where no traction is imposed on the crack lips[
Therefore eqns "7#\ "06#\ "08# are applicable to this problem2 and yield

Kp"o# � KA
p "o# � Fpq"8#KA

q ¦ðGp\I "8#TA
I ¦a�Hpq"8#KA

q Łzd¦O"o#

� Fpq"8#Kq¦ðGp\I "8#"TI¦p#¦a�Hpq"8#KqŁzd¦O"o# "p\ q � I\ II#^

KIII "o# � KA
III "o# � FIII\III "8#KA

III¦ðGIII\II "8#TA
II¦a�HIII\III "8#KA

IIIŁzd¦O"o#

� FIII\III "8#KIII¦ðGIII\II "8#TII¦a�HIII\III "8#KIIIŁzd¦O"o#\ "10#

2 More precisely\ recall that these equations hold provided also that the external loading is kept constant while the
crack propagates[ The loading of Problem A consists of the traction tp¦pn exerted on 1Vt\ which is indeed constant\
plus the traction s = n¦pn exerted on 1Vu[ The latter traction unfortunately depends on o since s 0 s"M\ o# depends on
it^ however it varies like o\ not zo\ as shown in Section 4[ Hence that variation of the SIFs due to the variation of the
loading "which adds to that arising from propagation of the crack# is also O"o# and therefore negligible here\ since we
consider only terms of order o9 � 0 and o0:1 in the expansion of the SIFs[
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where account has been taken of eqns "8# and "19#[ Thus\ the expression of KIII"o# is unchanged
with respect to the case of a traction!free crack\ whereas those of KI"o# and KII"o# are modi_ed
through the additional terms GI\I "8#pzd and GII\I "8#pzd[

With this sole modi_cation\ Cotterell and Rice|s "0879# two!dimensional reasoning is easily
transposed to three!dimensional situations^ let us brie~y recall that reasoning for completeness[
Let us consider the case where the crack is plane and loaded in mode I\ and assume that a small
imperfection "slight modi_cation of the loading or tiny deviation of the crack from coplanarity
due to a local toughness inhomogeneity for instance# generates a bit of mode II[ This induces a
small kink[ Propagation being supposed to obey Goldstein and Salganik|s "0863# {{principle of
local symmetry|| which stipulates that KII"o# must be identically zero as the crack extends\ one
must equate the successive terms of the expansion of that quantity ðeqn "10#0 with p � IIŁ in powers
of o or d to zero[ The _rst condition\ FII\q"8#Kq � 9\ yields the value of the "small# kink angle 8\
which is in fact not needed here[ The second condition gives the value of the _rst curvature
parameter a� of the crack extension]

GII\I "8#"TI¦p#¦a�HII\q"8#Kq � 9 c a� � −
GII\I "8#"TI¦p#

HII\q"8#Kq

\

i[e[\ since GII\I "8# � −1z1:p 8¦O"82#\ HII\I"8# � 2:3¦O"81# and HII\II"8# � O"8# "Cotterell and
Rice\ 0879^ Amestoy and Leblond\ 0881#]

a� �
7
2X

1
p

TI¦p
KI

8

to the lowest order in 8[ Now coplanar propagation can be considered as stable in a _rst
approximation if the e}ect of a� tends to counterbalance that of 8\ i[e[ if these quantities are of
opposite signs^ this leads to the following stability criterion]

TI¦p ³ 9\ "11#

which is the same as that given by Cotterell and Rice "0879# but for the additional pressure term[
The above form of the stability criterion is universal in the sense that it is applicable to any three!

dimensional situation " for a plane crack loaded in mode I#\ the coe.cients before TI and p being
always precisely equal to unity[ It is not\ however\ the most convenient form in practice^ indeed it
does not clearly exhibit the in~uence of the pressure applied\ because the non!singular stress TI

implicitly depends on that parameter[ In order to explicitly display this in~uence\ let us decompose
TI in the following way]

TI � T9
I −kp\ "12#

where T9
I denotes the non!singular stress due to the sole external loading "up\ tp# exerted on 1Vu

and 1Vt "the crack lips being traction!free#\ and −kp that due to the internal pressure alone "zero
displacements and tractions being imposed on 1Vu and 1Vt#[ The − sign is introduced here because
this non!singular stress will appear in practice to be negative[ The stability criterion then takes the
form
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T9
I ¦"0−k#p ³ 9[ "13#

The k coe.cient here has no universal expression and must be calculated in each particular case[

7[ Application to hydraulic fracturing

We now wish to apply the preceding result to the study of crack path stability vs out!of!plane
deviations in hydraulic fracturing[ The crack is idealized as penny!shaped and the surrounding
medium as in_nite[ The crack is subjected to an internal pressure p and some uniform "negative#
stresses are applied at in_nity[ We restrict our investigation to the case where the initial SIF KII is
zero all along the crack front^ the physical justi_cation of this hypothesis is that if it is not\
immediate kinking of the crack will occur as soon as propagation starts and tend to reduce it down
to zero[ This assumption imposes that the normal Oz to the crack plane be parallel to a principal
direction of the stress tensor at in_nity[ We then choose\ within the crack plane\ some axes Ox and
Oy parallel to the other two principal directions^ we shall also use the associated cylindrical
coordinates r\ u\ z[ The situation is summarized in Fig[ 6\ where the principal stresses at in_nity
are denoted −P\ −Q\ −R "P\ Q and R being positive#[

In order to apply the criterion "13#\ we need to know the coe.cient k tied to the value of the TI

stress generated by the internal pressure alone[ The full solution to this elasticity problem is given
in the book of Kassir and Sih "0864#\ Chap[ 0[ From there\ one can derive the value of k^ the result
is

k � 0
1
¦n "14#

"see Leblond\ 0882 for details#[

Fig[ 6[ Internally and externally loaded penny!shaped crack[
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It remains to evaluate the non!singular stress T9
I induced by the far stresses −P\ −Q\ −R alone

"the crack lips being traction!free#[ That due to −P and −Q is easily calculated^ indeed imposing
only these compressions results in a uniform stress tensor equal to −Pex & ex−Qey & ey\ so that
the non!singular stress generated at the point u of the crack front is −P cos1 u−Q sin1 u[ To get
that induced by −R\ let us decompose the corresponding stress _eld in the following way]

s � sA¦sB\ sA � s¦Rez & ez\ sB � −Rez & ez[

The stress _eld sA corresponds to a problem where the stress tensor vanishes at in_nity and a
tension R\ or equivalently a negative pressure −R\ is exerted on the crack lips^ hence the non!
singular stress generated is kR[ The stress _eld sB does not create any non!singular stress[ Therefore
the non!singular stress due to −R is kR\ and that due to −P\ −Q and −R is

T9
I � −P cos1 u−Q sin1 u¦kR

at the point u of the crack front[
It follows from this expression and eqn "14# that the stability criterion "13# reads

−P cos1 u−Q sin1 u¦kR¦"0−k#p � −P cos1 u−Q sin1 u¦"0
1
¦n#R¦"0

1
−n#p ³ 9[

Now\ propagation being supposed to be quasistatic\ the pressure imposed on the crack lips cannot
be arbitrary\ but is determined by the condition that KI be equal to the material toughness KIc[
Since the classical expression of KI for the problem considered is KI � 1"p−R#za:p where a
denotes the radius of the crack "Kassir and Sih\ 0864#\ this requires that p be given by

p � R¦
KIc

1 X
p

a
[

"This is in fact the minimum pressure\ corresponding to vanishing accelerations\ that must be
imposed in order to promote propagation[# Inserting this expression into the above stability
criterion\ one obtains the following _nal form of the latter]

−P cos1u−Q sin1 u¦R¦0
0
1

−n1
KIc

1 X
p

a
³ 9[ "15#

Condition "15# allows for an easy discussion of crack path stability[ Indeed\ if R is greater than
P or Q\ −P cos1 u−Q sin1 u¦R is positive for u � 9 or p:1^ since "0:1−n#"KIc:1#zp:a is also
positive\ the stability criterion is violated at some locations of the crack front[ Hence crack
orientations perpendicular to the major or intermediate "in absolute value# principal far stresses
always lead to instability[ On the other hand\ if R is smaller than P and Q\ −P cos1 u−Q sin1 u¦R
is smaller than −min"P\ Q#¦R and hence negative[ The sign of the left!hand side of condition
"15# depends on the magnitude of the principal far stresses with respect to KIc:za[ Since these
stresses essentially depend upon the crack depth under the ground surface\ it is concluded that if
the crack plane is ortho`onal to the minor "in absolute value# principal stress\ coplanar propa`ation
is stable for depths `reater than a certain critical value and unstable otherwise[

It is an experimental fact that cracks induced by hydraulic fracturing are quite generally observed
to develop orthogonally to the direction of minimum compression[ This feature can of course be
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interpreted in a very simple way through considerations of crack initiation] indeed this direction is
clearly favoured from that point of view since it corresponds to the minimum resistant forces that
must be overcome by the pressure imposed in order to create a crack[ The above discussion\
however\ provides another\ complementary explanation] if a crack happens not to be generated
perpendicularly to the direction of minimum compression "due for instance to a local toughness
anisotropy#\ coplanar propagation is unstable and the crack orientation is bound to quickly
change[

Exceptions to the experimental general rule just mentioned are sometimes observed to occur for
very shallow depths[ This may arise from the fact that the stresses due to gravity are very small for
such depths as compared to those necessary to promote crack initiation\ so that they might not
induce any preferred crack orientation in that case^ but the above discussion again yields a
somewhat di}erent and appealing interpretation[ Indeed no crack orientation is preferred from
the point of view of fracture path stability for depths smaller than the critical value\ since all
orientations then lead to instability[

Appendix

The aim of this Appendix is to provide expressions or numerical values for all non!zero com!
ponents of the operators F"8#\ G"8# and H"8#[ We use the notation

m 0
8

p
"−0 ³ m ³ ¦0#[ "A0#

The {{in!plane|| components of the operator F"8# are given by the following formulae\ the
accuracy of which is better than 09−5 for =8= ¾ 79>]

FI\I "8# � 0−2[6900906m1¦5[953451m3−5[226948m5¦4[96689m7

−1[77201m09−9[9814m01¦1[885m03−3[948m05¦0[52m07¦3[0m19¦O"m11#^ "A1#

FI\II "8# � −3[6012789m¦01[398757m2−04[976673m4¦01[202895m6

−6[21322m8¦0[4682m00¦3[9105m02−5[804m04¦3[10m06¦3[45m08¦O"m10#^ "A2#

FII\I "8# � 0[4696852m−3[723643m2¦5[528682m4−5[065912m6

¦3[33001m8−0[4239m00−1[9699m02¦3[573m04−2[84m06−0[21m08¦O"m10#^ "A3#

FII\II "8# � 0−6[6900906m1¦03[651542m3−03[640608m5¦09[47143m7

−3[67400m09−0[7793m01¦6[179m03−6[481m05¦9[14m07¦01[4m19¦O"m11#[ "A4#

The {{out!of!plane|| component FIII\III"8# admits the following simple analytic expression]
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Table A0[ Numerical values of the components of the oper!
ator H"8#

8 "># HI\I"8# HI\II"8# HII\I"8# HII\II"8#

9 9 −1[149 9[649 9
4 −9[987 −1[125 9[635 −9[078

09 −9[083 −1[085 9[620 −9[263
04 −9[177 −1[018 9[697 −9[442
19 −9[266 −1[926 9[564 −9[612
14 −9[350 −0[811 9[524 −9[768
29 −9[427 −0[675 9[476 −0[910
24 −9[597 −0[520 9[422 −0[034
39 −9[558 −0[359 9[363 −0[149
34 −9[610 −0[165 9[309 −0[223
49 −9[652 −0[971 9[233 −0[285
44 −9[685 −9[770 9[165 −0[325
59 −9[708 −9[566 9[196 −0[343
54 −9[722 −9[361 9[028 −0[349
69 −9[726 −9[169 9[961 −0[313
64 −9[721 −9[962 9[997 −0[267
79 −9[707 9[004 −9[941 −0[202

FIII\III "8# � 0
0−m
0¦m1

m:1

[ "A5#

Similarly\ the {{in!plane|| components of G"8# are given by

GI\I "8# � 04[6385095m1−36[822289m3¦52[554876m5−49[69779m7¦15[55796m09

−5[9194m01−6[203m03¦09[836m05−1[74m07−02[6m19¦O"m11#^ "A6#

GII\I "8# � −4[9021455m¦29[968439m2−48[454622m4¦50[063333m6−28[89138m8

¦04[5111m00¦2[9232m02−01[670m04¦8[58m06¦5[51m08¦O"m10# "A7#

and the {{out!of!plane|| component GIII\II"8# by

GIII\II "8# � −1mX
1p

0−m1 0
0−m
0¦m1

m

[ "A8#

Finally\ numerical values of the {{in!plane|| components of H"8# are provided in Table A0 for
9 ¾ 8 ¾ 79> "values for 8 ³ 9 are readily obtained from the easily proved fact that HI\I and HII\II

are odd\ and HI\II and HII\I even\ functions of 8# whereas the {{out!of!plane|| component HIII\III"8#
is given by the following formula]



J[!B[ Leblond : International Journal of Solids and Structures 25 "0888# 68Ð092091

HIII\III "8# �
0

cos"pm:1# $
2
3 0

0−m
0¦m1

m:1

sin 0
pm
1 1−

1m

z0−m1 0
0−m
0¦m1

m

%[ "A09#
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